Quantum Mechanics and Modelling

Quantum Mechanics and ModellingCode de l'UE : HMCH232

Présentation

- Theoretical fundamentals of many electronic systems
-Mandatory approximations to solve numerically Schrödinger equation for systems with more than one electron
-Basis sets; Gaussian functions to fit one Slater wave function; relation between Slater wave function and radial wave functions obtained analytically for H-atom; angular wave functions and Lebedev grid; linear combination of atomic wave functions
- Why analytical solutions are not possible for other than hydrogen atom
- Hartree-Fock method
- Semi-empirical solutions: Hückel formalism
- Density Functional Theory
- Practical skills: use of quantum chemical programs
 

Objectifs

- Knowledge about the background of the quantum chemical computer program’s in order to go beyond “ black box ” and “ press button ” usage of those codes.
-Ability to perform independently simulation of spectroscopic properties and to bring the theoretical results for interpretation of experimentally observed spectral features.
-Necessary background to further develop, independently, skills for theoretical studies of more complex problems if needed in the feature work of the students.

Pré-requis recommandés

Knowledge of Quantum Mechanics
 

Volume horaire

  • CM : 50
  • TD : 25
  • TP : 0

Syllabus

  1. A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, McGraw-Hill, 1982;
  2. R. McWeeny, Methods of Molecular Quantum Mechanics, Academic Press, 1992;
Diplômes intégrant cette UE

En bref

Crédits ECTS 7

Période de l'année
secondSemestre

Langue d'enseignement
fr

Contact(s)

Contact(s) administratif(s)

Werner PAULUS (werner.paulus @ umontpellier.fr)