• ECTS

    2 crédits

  • Composante

    Faculté des Sciences

Description

1. Bayesian inference: Motivation and simple example. 

2. The likelihood. 

3. A detour to explore priors. 

4. Markov chains Monte Carlo methods (MCMC)

5. Bayesian analyses in R with the Jags software.  

6. Contrast scientific hypotheses with model selection (WAIC).

7. Heterogeneity and multilevel models (aka mixed models. 

Lire plus

Objectifs

1. Try and demystify Bayesian statistics, and MCMC methods 

2. Make the difference between Bayesian and Frequentist analyses 

3. Understand the Methods section of a paper that does Bayesian stuff 

4. Run Bayesian analyses with R (in Jags)

Lire plus

Heures d'enseignement

  • Approche Bayésienne de la variabilité - TDTravaux Dirigés9h
  • Approche Bayésienne de la variabilité - TPTravaux Pratiques6h

Contrôle des connaissances

Contrôle continu intégral : 100%

Lire plus

Informations complémentaires

Volumes horaires* :

CM : 0 h

TD : 9 h

TP : 6 h

Terrain : 0 h

**********

SPS : 0 h

Séminaires : 0 h

Hors UM : 0 h

Lire plus