

Algèbre II, espaces vectoriels et applications linéaires

Présentation

Description

Cette fait suite à l'UE de S1 (Algèbre I) où ont été introduits algèbre linéaire dans R², R³ et Rn, calcul matriciel et polynômes à coefficients réels.

L'objectif est d'introduire quelques concepts élémentaires de structure algébrique, et approfondir le travail sur les espaces vectoriels et les applications linéaires, ainsi que les polynômes.

Objectifs

- Les structures en algèbre
- * Loi de composition interne sur un ensemble
- Notion d'associativité, de commutativité, d'élément neutre, d'inverse
- * Notion de groupe, d'anneau et de corps
- * Calcul dans un anneau. Identités remarquables et formule du binôme.
- * Exemples (C est un corps, racines de l'unité, groupe des permutations, anneau des polynômes et des endomorphismes/matrices, groupe des automorphismes/ matrices inversibles et sous-groupe des isométries, etc.)
- La structure d'espace vectoriel
- * Structure d'espace vectoriel sur un corps K. Cas Rn et Cn, espace des suites réelles, espace des fonctions numériques

- * Combinaisons linéaires et colinéarité
- * Sous-espace vectoriel, sous- espace vectoriel engendré par une partie familles génératrices, familles libres, bases, dimension, théorème de la base incomplète et de l'échange
- * Somme et somme directe de sous-espaces, supplémentaire.
- * Rang d'une famille de vecteurs
- * Formule de Grassmann
- Applications linéaires
- * Noyau et image
- * Correspondance application linéaire matrice avec toutes les propriétés usuelles.
- * Changement de base
- Invariance de la trace par changement de base et définition de la trace d'un endomorphisme, tr(uv)=tr(vu).
- * Isomorphisme et application linéaire réciproque. Groupes GL(E) et GL(n).
- * Projection, symétrie, homothétie
- * Rang d'une application linéaire, rang d'une matrice. Théorème du rang. Invariance du rang par composition/ multiplication par des matrices inversibles
- * Forme échelonnée réduite d'une matrice, opérations élémentaires
- * Retour sur les systèmes linéaires, lien rang d'une matrice/ nombre de pivots de sa forme échelonnée réduite, dimension du noyau/nombre de variables libres
- Polynômes
- * Retour sur **K**[X], vu comme espace vectoriel
- * Cas de **K**n[X] : changement de bases, décomposition des polynômes dans des bases du type 1,X-a,(X-a)2...
- Preuve de a racine de P ssi il existe Q tel que P=(X-a)Q

- * Formule de Taylor, caractérisation de la multiplicité des racines
- * Polynômes interpolateur de Lagrange
- * Substitution de l'indéterminée

Pré-requis nécessaires

Programme de mathématiques du S1, et en particulier Algèbre I, Géométrie dans le plan et plan complexe, et Raisonnement et théorie des ensembles.

Pré-requis recommandés :

Programme de mathématiques du S1.

Informations complémentaires

Volumes horaires:

CM: 30 h

TD: 30 h

TP:0

Terrain: 0

Infos pratiques

Contacts

Responsable pédagogique

Simon MODESTE

J 04 67 14 35 80

simon.modeste@umontpellier.fr

