• Structure de formation

    Faculté des Sciences

Présentation

La troisième année de la licence mention mathématiques, (L3 Mathématiques générales) achève l’acquisition de connaissances qui permettent d’aborder les différents Masters de mathématiques avec des bases solides, quelle que soit leur spécialité (statistique, mathématiques appliquées, mathématiques fondamentale, enseignement des mathématiques). Elle se place dans la continuité des années des L1 et L2 avec un accent plus fort sur l’abstraction et le raisonnement, le but étant de mettre en place les outils théoriques nécessaires à la poursuite d’études.

            Cette année est également une année de transition vers les Masters : les différentes spécialités des Master de Mathématiques sont présentes dans des UE, permettant à l’étudiante ou l’étudiant, par des choix d’options, de préfigurer une orientation pour l’année suivante.

Lire plus

Objectifs

:  - Acquérir de solides connaissances en mathématiques

  - Acquérir des capacités d'abstraction et de raisonnement

  - Utiliser et renforcer des capacités rédactionnelles et d'expression acquises en L1 et L2

  - Renforcer la méthode de travail, l’esprit de synthèse, de précision et de rigueur

 

Lire plus

Savoir faire et compétences

Les compétences acquises durant les 3 années de licence de mathématiques permettent d’acquérir des connaissances approfondies en mathématiques afin de s’orienter vers différents masters de mathématiques, quelle que soit leur spécialité (statistique, mathématiques appliquées, mathématiques fondamentale, enseignement des mathématiques).

La troisième année de licence est l’étape finale d’acquisition de ces compétences

 

Lire plus

Programme

L’année est organisée en 2 semestres:

Semestre 5:

  • Groupes et anneaux 1 (6 ECTS)
  • Calcul différentiel et équations différentielles (6 ECTS)
  • Mesure, intégration, Fourier (8 ECTS)
  • Combinatoire énumérative (4 ECTS)
  • Théorie des probabilités (4 ECTS)
  • Anglais (2 ECTS)

Semestre 6:

 

  • Topologie des espaces métriques (7 ECTS)
  • Analyse complexe (6 ECTS)
  • Analyse numérique des équations différentielles (5 ECTS)
  • Culture générale (2 ECTS)
  •  UE au choix parmi les 3 suivante.
  • Modélisation stochastique (5 ECTS)
  • Groupe et anneaux 2 (5 ECTS)
  • Optimisation convexe (5 ECTS)
Lire plus
  • Calcul Différentiel et Equations Différentielles

    6 crédits
  • Groupes et anneaux 1

    6 crédits
  • Mesure et intégration, Fourier

    8 crédits
  • Théorie des Probabilités

    4 crédits
  • Anglais S5

    2 crédits
  • Combinatoire énumérative

    4 crédits
  • Culture générale - A choisir dans la liste ci-dessous +

    2 crédits
    • Au choix : 1 parmi 12

      • Introduction à l'Océanographie

        2 crédits
      • Plaisirs et addictions

        2 crédits
      • La place de l'homme dans l'Univers

        2 crédits
      • Ecriture créative

        2 crédits
      • Education à la transition écologique

        2 crédits
      • Sport

      • Outils et concepts de base en informatique (PIX)

        2 crédits
      • Sciences et Musique

        2 crédits
      • Sc. et Culture parfumée

        2 crédits
      • Fabrication additive

        2 crédits
      • L'ordinateur quantique, entre physique et mathématiques

        2 crédits
      • Le questionnement du mouvement

        2 crédits
  • Choix Profils

    28 crédits
    • Au choix : 1 parmi 2

      • Profil Maths CAPES

        28 crédits
        • Initiation à l'enseignement

          5 crédits
        • CHOIX 1

          5 crédits
          • Au choix : 1 parmi 2

            • Modélisation stochastique

              5 crédits
            • Analyse numérique des Equations différentielles

              5 crédits
        • Géométrie

          9 crédits
        • Complément pour le CAPES

          9 crédits
      • Profil Maths Générales

        28 crédits
        • Topologie des espaces métriques

          7 crédits
        • CHOIX 1

          10 crédits
          • Au choix : 2 parmi 3

            • Modélisation stochastique

              5 crédits
            • Groupes et anneaux 2

              5 crédits
            • Optimisation convexe

              5 crédits
        • Analyse numérique des Equations différentielles

          5 crédits
        • Analyse Complexe

          6 crédits

Admission

Public cible

Cette formation est accessible directement pour toute personne ayant validé une L2 Mathématiques à l’Université de Montpellier, ou 2 années de CUPGE ou de MPSI.

 

Lire plus

Pré-requis nécessaires

Avoir suivi une L2 de mathématiques ou toute formation équivalente.

Lire plus

Pré-requis recommandés

connaissances solides de l’algèbre linéaire et de l’analyse réelle de L2

Lire plus

Et après

Poursuites d'études

vers les masters de Mathématiques, quelle que soit leur spécialité, ou des masters d’autres disciplines à contenu mathématique, ou écoles d’ingénieur·es.

Lire plus

Insertion professionnelle

Cette formation ouvre la voie vers les métiers de l'enseignement et/ou de la recherche et vers les métiers de l’ingénierie après un master spécialisé (ou équivalent)

 

Lire plus